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Abstract Low-lying energy levels of two interacting electrons confined in a two-dimen-
sional parabolic quantum dot in the presence of an external magnetic field have been revised
within the frame of a novel model. The present formalism, which gives closed algebraic
solutions for the specific values of magnetic field and spatial confinement length, enables us
to see explicitly individual effects of the electron correlation.
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1 Introduction

Two-dimensional hydrogen atom in a magnetic field has been subject of active research
during the last years [1–5]. This problem is of practical interest because of the technological
advances in nanofabrication technology that have made it possible to create low-dimensional
structures like quantum wells, quantum wires and quantum dots. A large body of articles has
been published on this problem in the framework of non-relativistic quantum mechanics as
relativistic effects are not considerably significant in semiconductor devices.

In particular, quantum dots in which only a few electrons are bound at semiconductor
interfaces have been the subject of intense research studies over the last few years. The
electron motion in quantum dots are confined to a region with dimensions comparable to
the de Broglie wavelength of the particle. The result is the quantization of energy. However,
since the quantization in the vertical direction is much stronger than in the planar directions,
a quantum dot can well be treated as a two-dimensional disc of finite radius. The intensive
investigations have revealed that optoelectronic properties of such systems are quite sensitive
to the reduction of their dimensionality and to the strength of applied external magnetic
field, and depend strongly on the electron-electron interaction. Different methods have been
used in the related literature to search the energy spectrum and the correlation effects of the
interacting electrons in such systems. For most recent reviews, see [6, 7].
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However, an exact solution of the Schrödinger equation for a many-electron system is not
possible in general. Thus, very little is known about the nature of the electron correlation
even in simple systems. Nevertheless, insight into the correlation problem can be obtained
through the study of exactly solvable model systems in some specific cases. For this purpose
it is simplest to consider a system of two particles bound by a suitable central potential for
which an exact solution is possible. This simplification, at least in part, provides scope for
much further studies.

Therefore, in the recent literature regarding quantum dots attention mainly has been fo-
cused on understanding the quantum mechanical behaviour of two interacting electrons con-
fined in various two-dimensional dot geometries under the influence of an external magnetic
field, due to the fact that electron-electron interactions which are known to be quite impor-
tant in such quasi-zero-dimensional structures are enhanced by the presence of an additional
confinement arising from the magnetic field. However, the complicated nature of the re-
cursion relations appeared in solving the associated radial part of the relevant Schrödinger
equation of even this simplified interacting two-electron case does not allow in general an
exact solution, except for the case that some certain relations between the Coulomb repul-
sion strength and the strength of the magnetic field and/or spatial confinement exist. As a
result, the studies on exact treatments so far have been content with just obtaining a few
eigenvalues and their related eigenstates.

Within this context, using the spirit of the novel approximation proposed more re-
cently [8], we suggest here an alternative scheme for the treatment of the problem inter-
ested, which capables of determining the general closed form solution for such states, in
terms of associated Laguerre polynomials, together with corresponding eigenvalues. The
proposed algebraic structure allows one to see clearly the physics behind individual contri-
butions in constructing analytical solutions. A full description of the quasi-exact solutions to
the problem, together with the comparative analysis of the analytical results obtained within
the frame of the present formalism with those previously found in the literature, are given.
Although a similar idea to provide closed-form expressions for the solutions of the same
problem has recently appeared [6], the prescription suggested in this article decomposes el-
egantly the related Schrödinger equation involving a quasi-exactly solvable potential, which
is not feasible in [6], in order to comprehend how two-body correlation affects the exactly
solvable piece of the entire problem. To our knowledge, the literature does not cover such
an investigation.

The paper is organized as follows. In Sect. 2 we first give a theoretical background on the
problem considered. The main idea of our approach is then summarized in the same section.
The application of the present model to the problem leading to simple relations for the
calculations at each successive orders of the modification function and the results obtained
are shown in Sect. 3. The paper ends with a brief summary and concluding remarks.

2 Theoretical Considerations

2.1 Background of the Problem

The Hamiltonian for a system of two interacting electrons in the presence of both an external
uniform magnetic field, applied along z-axis, and a parabolic potential can be separated into
the center-of-mass and relative motion parts as follows:

Hcm = 1
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Hrm = 1
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where R̄ = 1
2 (r̄1 + r̄2) and P̄ = (p̄1 +p̄2) are the center-of-mass coordinates while r̄ = r̄1 − r̄2

and p̄ = 1
2 (p̄1 − p̄2) are the relative coordinates, similarly M = 2m∗ and Q = 2e are the

total mass and charge, respectively, in the center-of-mass consideration while μ = m∗/2
and q = e/2 are the reduced mass and charge in the relative motion system, and finally
w0 is the characteristic confinement frequency. Obviously, m∗ is the effective mass of each
electron and ε denotes the dielectric constant of the medium. Due to this separability, the
wave function of the system considered reads simply as �(r̄, R̄) = �(r̄)�(R̄), and the
Schrödinger equation splits into two independent equations. Naturally, the total energy of
the system in this case is E = Ecm + Erm.

If the symmetric gauge Ā(R̄) = B̄ × R̄/2 is chosen for the vector potential of the mag-
netic field, (1) can then be written as a sum of two terms; the usual two-dimensional isotropic
harmonic oscillator Hamiltonian with frequency w = [w2

0 + (w2
c /4)]1/2 plus a term propor-

tional to Lz. Here, wc = QB/Mc is the cyclotron frequency and Lz is the z-component of
the angular momentum operator which commutes with the first part of the Hamiltonian.

As the solutions of (1) are well known in the literature, which can also be extracted easily
from the present calculations, we mainly focus here on the relative motion Hamiltonian
in (2) that is reduced to

Hrm = p2

2μ
+ 1

2
μw2r2 + e2

ε

1

|r̄| + wc

2
Lz (3)

Since we are dealing with a two-dimensional problem we choose to work in polar coordi-
nates (r, ϕ), consequently we can introduce the following ansatz for the eigenfunction

�(r̄) = r−1/2ψ(r)eimϕ/
√

2π (4)

Substituting (4) into (3) one can readily obtain that the radial function ψ(r) satisfies the
second-order differential equations

{
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2
m� − Erm

}
ψ(r) = 0 (5)

where m = 0,±1,±2, . . . is the azimuthal quantum number.

2.2 Formalism

So far many models have been introduced to construct analytical solutions of the above
Hamiltonian. Bearing all these works in mind, we suggest here an alternative scheme for the
treatment of such problems, leading to explicit understanding of the individual contributions
coming from the distinct interaction terms appearing in (5), unlike the other models.

Let us first concentrate on the original form of the formalism [8], which has been de-
veloped in the light of a remarkable work [9] and employed successfully to discuss two
significant problems in physics [10, 11]. At this stage we note that this model presented be-
low will eventually be improved in the next section for its proper applicability to the present
problem. This would clarify the flexibility, consequently, the power of the formalism in
treating exactly- and quasi-exactly solvable systems within the same frame.
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Starting with the general form of the Schrödinger equation

ψ ′′(r)
ψ(r)

= 2μ

�2
[V (r) − E] (6)

and remembering that its exact solutions usually take the form

ψ(r) = f (r)F [s(r)] (7)

the substitution of (7) into (6) yields obviously the second-order differential equation
(

f ′′

f
+ F ′′s ′2

F
+ s ′′F ′

F
+ 2

F ′s ′f ′

Ff

)
= 2μ

�2
(V − E) (8)

that is reduced to the form of well known hypergeometric (or confluent hypergeometric)
equations

F ′′ +
(
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s ′2 + 2
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s ′f

)
F ′ +

[
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s ′2f
+ 2μ

�2

(
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)]
F = 0 (9)

Reminding the general form of the differential equations, which reproduce closed analytical
solutions through orthogonal polynomials,

F ′′(s) + τ(s)

σ (s)
F ′(s) + σ̃ (s)

σ 2(s)
F (s) = 0 (10)

where the forms of τ/σ and σ̃ /σ 2 are well defined [12] for any special function F(s), one
obtains

s ′′
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= τ

σ
,
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+ 2μ
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)
= σ̃

σ 2
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The energy and potential terms in (11) may be decomposed in two pieces, which should
provide a clear understanding for the contributions of F and f terms in (7) to the full solu-
tions, such that E − V = (EF + Ef ) − (VF + Vf ). Therefore, the second equality in (11) is
transformed to a couple of equation

f ′′

f
= 2μ

�2
(Vf − Ef ), − σ̃

σ 2
s ′2 = 2μ

�2
(VF − EF ) (12)

where f can be expressed in an explicit form considering the first part in (11) such as

f (r) ≈ (s ′)−1/2 exp

[
1

2

∫ s(r) τ

σ
ds

]
(13)

3 Application

Up to now, this formalism has been used only to study exactly solvable systems [8, 10, 11]
and the related references therein. Therefore, it needs a meticulous modification to solve also
quasi-exactly solvable systems as the one of interest in this article. To proceed, consider (5)
where the potential terms are

VES(r) = VF (r) + Vf (r) = 1

2
μw2r2 + �
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4
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(14)
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which belongs to exactly solvable potential family having explicit expressions for the com-
plete spectra, and the Coulomb interaction term

�V (r) = e2

εr
(15)

that transforms the Schrödinger equation to the quasi-exactly solvable case [13]. The other
term related to Lz (m�wc/2) can simply be considered as a shifting parameter that will
automatically appear later in our energy expression.

Regarding that a quasi-exactly solvable potential behaves similar to the present consid-
eration

VQES(r) = VES(r) + �V (r) (16)

Equation (7) in the preceding section needs to be rearranged as

ψQES(r) = ψES(r)�ψ(r) = [f (r)F (s(r))]g(r) (17)

in which g(r) is the modification function due to the presence of �V (r) term. The substitu-
tion of (17) in (6), where in this case V → VQES and E → EES + �E, gives

F ′′ +
(

s ′′

s ′2 + 2
f ′

s ′f

)
F ′ +

[
f ′′

s ′2f
+ 2μ

�2

(
EES − VES

s ′2

)]
F = 0 (18)

which is (9), and one more equation, unlike exact solvability prescriptions,

g′′

g
+ 2

g′

g

(
f ′

f
+ F ′s ′

F

)
= 2μ

�2
(�V − �E) (19)

where the derivatives are taken with respect to r . Hence, the frame in (5) splits successfully
into two parts to shed a light in revealing the inter-relation between exactly and quasi-exactly
solvable potentials.

Evidently, the most significant piece in this model is (19) that is responsible for the calcu-
lation of corrections brought to the exact solutions obtained by the use of (18). Namely, the
modifications because of the Coulomb interaction in (5) on the explicit solutions that belong
to confining potential with the barrier term can be extracted with the consideration of (19).
When g(r) becomes constant, it can be easily seen that (19) dies away and calculations re-
duce to the exactly solvable case, which provides us a testing ground for the reliability of
the calculations.

We first deal with the closed algebraic solutions of the exactly solvable piece, (14), ap-
pearing in (5). This brief investigation opens a gate to the reader for the visualization of the
explicit form of the center-of mass solutions without making any calculation. From the dif-
ferential equation of the Laguerre polynomials [12], and considering (10) and (18) together,
one can see that

F(s) = e−s/2s(α+1)/2Lα
n(s), σ = 1, τ = 0, σ̃

2n + α + 1

2s
+ 1 − α2

4s2
− 1

4
,

n = 0,1,2, . . . (20)

Using the discussion presented in the previous section, in particular (12) and (13), and ac-
cepting that s ′2/s = a2 where a is constant, we obtain

s = a2r2

4
, f =

√
2

a2r
(21)
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leading to

VF = �
2

2μ

[
a4r2

16
+ α2 − (1/4)

r2

]
, EF = �

2a2

4μ
(2n + α + 1),

(22)

Vf = �
2

2μ

3

4r2
, Ef = 0

Clearly, sum of the two potential pieces (VF +Vf ) should be equal to (14). This comparison
yields that α = |m|, which satisfies mathematical definitions in constructing Laguerre poly-
nomials, and a2 = 4μw/�. Finally, the corresponding closed expressions for the energy and
unnormalized wave functions are

EES = EF + Ef = (2n + |m| + 1)�w,

(23)
ψES = f F = r |m|+ 1

2 exp(−wμr2/2�)L|m|
n (wμr2/�)

which have the same form with those of the center-of mass solutions, keeping of course in
mind that r → R,μ → M in this case. Note that the constant term (m�wc/2) in (5) due to
the magnetic field applied is now readily invoked to the solutions

EES(B) = EES + m�wc/2 (24)

in case, of course, B �= 0.
After all, (19) can be expressed as

g′′

g
− 2
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g

{
1

2r
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[
a2r

4
− 1

r

(
2n+|m|+ 1 − 2(n + |m|)L|m|

n−1

L
|m|
n

)]}
= 2μ

�2

(
e2

εr
−�E

)
(25)

as (L|m|
n )′ = (n/s)L|m|

n − ((n + |m|)/s)L|m|
n−1. This vital part of the formalism is a kind of

Riccati equation. The exhaustive analysis of (25), in the light of related literature, guides us
to choose the correction term as

g(r) = 1 +
∑

j

βj r
j , j = 1,2,3, . . . (26)

that modifies the solutions in (23) for small r-values because of the natural existence of
the Coulomb term in the total Hamiltonian. In the above definition, βj=1 is responsible for
constructing the potential term in (25) having different structure for each j -value in order
to keep the term related to the Coulomb interaction unchanged with the increasing degree
of g(r),

2μ

�2

e2

εr
= 1 + 2|m|

r
β1 (27)

3.1 Analysis and Discussion

For a clear understanding of the calculation results, let us consider first n = 0 and j = 1 case
for which L

|m|
−1 = 0 in (25) and subsequently

β1 = ± a√
2 + 4|m| = ±

√
2μw

(1 + 2|m|)� (28)
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As we deal with the two-electron interaction, the positive root should be chosen. This proper
chose produces

2μ

�2
�Ej=1 = a2

2
⇒ �Ej=1 = �w, �ψ = gj=1 = 1 +

√
2μw√

(1 + 2|m|)� r (29)

Similarly, in case of j = 2 while again n = 0, the form of the modification function becomes
g(r) = 1 + β1r + β2r

2 that forced calculations to reproduce now three roots for β1

β1 = 0,±
√

4μ(3 + 4|m|)w
(1 + 2|m|)2�

(30)

depending upon obviously the appropriate choice of β2 (= 2μw/�(1 + 2|m|)). This simply
can be understood as a kind of compensation to be able to validate (27), since g(r) now is the
second order polynomial. Again, the physically meaningful root should be the positive one
as the others do not satisfy (27), at least for the present consideration. It is however reminded
that if one interests, unlike our case, in two-body interaction having opposite charges, neg-
ative β1 values should of course be chosen. Proceeding with the use of convenient β1 value
for the present consideration then one gets

�Ej=2 = 2�w, �ψ = gj=2 = 1 +
√

4μ(3 + 4|m|)w
(1 + 2|m|)2�

r + 2μw

�(1 + 2|m|) r2 (31)

This procedure is well adapted to the use of software systems such as Mathematica and
allows the computation to be carried out up to high orders of the polynomial in (26). For any
given j -value, simple algebraic manipulations provide a clean route in understanding the
interconnection between the node numbers (n) in the wave function and orders of g(r). The
increase in the value of j for different radial quantum numbers (n) does not imply special
difficulty since the node number of the total wave function in (17) is merely defined by the
structure of g(r). Our careful calculations have nicely revealed that 2n+1 ≤ j , consequently
n ≤ (j − 1)/2 being one of the important observations in the present study. Two examples
above justify this fact. To clarify this point, a small piece of the analytical results obtained
(n = 0,1) are illustrated in Table 1.

The other significant observation encountered through the work discussed in this article
is the relation between j and the number possible roots for β1. More explicitly, one should
find j + 1 roots for β1 if the degree of g(r) is j . From these mathematically possible roots,
the physically acceptable ones corresponding to the nodes can easily be picked up by n ≤
(j − 1)/2. For instance, we have 3 roots in (30) if j = 2, but from the physics point of
view we are forced to choose one of them due its positive sign. This is indeed governed by
n ≤ (j − 1)/2 representing a concrete relation that enables us to decide precisely regarding
the structure of the wave function we deal with. Thus, in case of j = 2, there should be
only one β1 value which certainly should produce a wave function without any node, since
n = 0. Further, remembering the well known connection between the principal quantum
number (np = 1,2, . . .) related to energy levels and the radial quantum number (n), np =
n + |m| + 1 in two dimensions, one can easily determine the level of a state function for
arbitrary azimuthal quantum numbers.

The final outcome of the calculations comes from the attentive investigation of (27). For
simplicity, let us concentrate on the lowest case where n = 0 and j = 1 for which β1 is given
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Table 1 Low-lying quantum state energy corrections, potential parameters in (27) and cyclotron frequencies
at each successive orders of g(r), which are required by (33). In the table, m∗ and |m| represents the effective
mass of the electrons and arbitrary azimuthal quantum numbers, respectively

j n �E β1 (only the positive roots have been used) (wc/2) =
√

w2 − w2
0

1 0 �w ±
√

m∗w
(1+2|m|)�

√(
m∗e4

(1+2|m|)ε2�3

)2 − w2
0

2 0 2�w 0,±
√

2m∗(3+4|m|)w
(1+2|m|)2�

√(
m∗e4

2(3+4|m|)ε2�3

)2 − w2
0

3 0 3�w ±
√

10+10|m|+√
73+64|m|(2+|m|)m∗w

�(1+2|m|)2

√(
m∗e4

(10+10|m|+√
73+64|m|(2+|m|))ε2�3

)2 − w2
0

3 1 3�w ±
√

10+10|m|−√
73+64|m|(2+|m|)m∗w

�(1+2|m|)2

√(
m∗e4

(10+10|m|−√
73+64|m|(2+|m|))ε2�3

)2 − w2
0

4 0 4�w 0,±
√

25+20|m|+3
√

33+8|m|(5+2|m|)m∗w

�(1+2|m|)2

√(
m∗e4

(25+20|m|+3
√

33+8|m|(5+2|m|))ε2�3

)2 − w2
0

4 1 4�w ±
√

25+20|m|−3
√

33+8|m|(5+2|m|)m∗w

�(1+2|m|)2

√(
m∗e4

(25+20|m|−3
√

33+8|m|(5+2|m|))ε2�3

)2 − w2
0

by (28). By substituting this value in (27), and keeping in mind that the left hand side of the
equation should remain unchanged at each order of j , one can find that

w = 2μe4

ε2(1 + 2|m|)�3
(32)

From Sect. 2 we know that w = [w2
0 + (w2

c /4)]1/2, hence the cyclotron frequency takes the
form

wc ≡ (e/2)B

μc
= eB

m∗c
= 2

[(
m∗e4

ε2(1 + 2|m|)�3

)2

− w2
0

]1/2

(33)

This feature implies that for specific values of the magnetic field, the Hamiltonian in (5)
can be solved exactly. In other words, the Coulomb interaction in (5) destroys the general
symmetry, reducing the problem to the non-exactly solvable case, nevertheless the magnetic
field can restore the symmetries again for its particularly chosen values. In connection with
this it is remarkable that the novel prescription in (19), and its extended form (25), works out
the two-electron correlation problem existed in (5) at once, in an elegant manner, bypassing
the difficulties and cumbersome calculations involved through the three-term recursion re-
lations and group theoretical approach used in [6, 13–17]. Moreover, for the limiting case
where B = 0, the choice of a special characteristic length (�0) for the quantum dot maintains
reproducing closed analytical expressions for the relative motion of electrons in the device,
as w0 = �/m∗�2

0. Additionally, from (33), when the magnetic field increases, apparently the
effective frequency (w) gains larger values, the dot size (�0) decreases. From Table 1, it is
evident that the smallest frequency has zero node while the second largest one has one node,
and so on.

In finalizing, we combine the above results with (23) and (24)

Erm = (j + 2n + |m| + 1)�w + m�wc

2
, ψrm = gj (f F ), j = 1,2,3, . . . (34)
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to define the internal motion of the electrons algebraically. For the complete consideration,
it is reminded however that E = Ecm + Erm and � = �(r)�(R) where the connection
between �and ψ has been shown by (4). The results obtained and the observations discussed
above support the findings in [6, 7, 13–17] concerning with the same problem within the
frame of alternative treatments.

Further, from (34), the effect of the electron correlation connecting to the j -value on
the whole energy spectra of the quantum dot is now explicitly attainable. We see that the
magnetic field shifts the ground state spectrum with n = 0, m = 0 to those of higher angular
momenta (n = 0,m � 0) in order to decrease the Coulomb electron-electron repulsion, as
reported in [18–21]. This can be seen from a careful investigation of (27, 28, 30, 32, 33),
which are eventually employed by (34), and the physics behind it is understood as follows.
As B increases, the electrons are further squeezed in the quantum dot, resulting in an in-
crease of the repulsive Coulomb energy between electrons, and in effect the energy levels.
In connection with this, the increase in the magnetic field strength causes to the increase in
the energy of the state m = 0 while the energy of the states with m � 0 decreases. This leads
to a sequence of different ground states. The behaviour for excited levels seems similar, see
Table 1.

Finally, through the discussion in this section, it is stressed that we have started with
a natural consideration that (14) represents an exactly solvable piece in (5). Instead, on
the contrary, one may start with an alternative approach to the same problem, namely the
Coulomb potential with the barrier term may be considered as the exactly solvable part in (5)
and all the procedure is then carried out for the new perturbing potential (�V = μw2/2r2).
This significant consideration, which does not cause any physical problem, can be used to
check the reliability of the calculation results obtained,

EHO
ES + �EC = EC

ES + �EHO, ψHO
ES �ψC = ψC

ES�ψHO (35)

producing indeed exactly identical algebraic expressions.
As concluding remark, due to its simplicity and accuracy in particular for small orders

of the polynomial at low-lying states we believe this method to be competitive with other
techniques developed to deal with the problem under consideration. As a matter of fact,
the wide applicability of the scheme used can be readily observed by raising the correction
order, j -value, a step which does not in principle bear any technical difficulty.

4 Concluding Remarks

Summarizing, we have calculated the discrete energy spectra for two electrons in a two-
dimensional harmonic well that serves as a simple but suitable model for quantum dots
on semiconductor interfaces. We have shown that exact solutions to the Schrödinger equa-
tion for potentials of the form Coulomb plus harmonic oscillator can be found subject to a
constraint on the ratio between the strengths of these potential terms. This means that the
symmetries of the Hamiltonian for such systems can be recovered for particularly chosen
values of the magnetic field and the geometric size of the dot. The most appealing feature
of quantum dots as compared to other atomic-like systems like donors in semiconductors is
the tunability of their size and electron number by technological means. Taking this point of
view, it would be interesting to extend the present scenario, which has proven its success for
the simplest quantum dot, to other more complex systems. In particular, the present results
would be useful in perturbational treatments of the exact spectra of a few particle systems,
and thus provide a further insight on discussion of the fractional nature of such systems.
Along this line, the works are in progress.
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